Growth of Partial Sums of Divergent Series

By R. P. Boas, Jr.

Abstract

Let $\Sigma f(n)$ be a divergent series of decreasing positive terms, with partial sums s_{n}, where f decreases sufficiently smoothly; let $\varphi(x)=\int_{1}^{x} f(t) d t$ and let ψ be the inverse of φ. Let n_{A} be the smallest integer n such that $s_{n} \geqslant A$ but $s_{n-1}<A$ $(A=2,3, \ldots)$; let $\gamma=\lim \left\{\Sigma_{1}^{n} f(k)-\varphi(n)\right\}$ be the analog of Euler's constant; let $m=[\psi(A-\gamma)]$. Call ω a Comtet function for $\Sigma f(n)$ if $n_{A}=m$ when the fractional part of $\psi(A-\gamma)$ is less than $\omega(A)$ and $n_{A}=m+1$ when the fractional part of $\psi(A-\gamma)$ is greater than $\omega(A)$. It has been conjectured that $\omega(A)=1 / 2$ is a Comtet function for $\Sigma 1 / n$. It is shown that in general there is a Comtet function of the form

$$
\omega(A)=\frac{1}{2}+\frac{1}{24}\left\{\left|f^{\prime}(m)\right| / f(m)\right\}(1+o(1))
$$

For $\Sigma 1 / n$ there is a Comtet function of the form $1 / 2+1 /(24 m)-\left\{1 /\left(48 m^{2}\right)\right\}(1+o(1))$. Some numerical results are presented.

1. Introduction. If $\Sigma_{n=1}^{\infty} f(n)$ is a divergent series of positive terms that approach 0 , one can measure how fast it diverges by seeing how fast the partial sums s_{n} increase. Numerical data for representative series are given in the appendix to [4] (p. 69), but some of them are rather inaccurate. The present note grew out of an attempt to recompute this table. The results are given in the table on p. 259; they correct some of the entries in [4] and give a few more. The entries less than 10^{6} were found by direct machine evaluation of the partial sums; most of these were checked, and the other entries were obtained, by using Theorem 2 below, which is a generalization of known results for the harmonic series [2], [3]. The entries for the harmonic series (no. 4 in the table) were originally calculated by Wrench and published in [2].

A classical theorem of Maclaurin and Cauchy (see [4, p. 45]) states that if f is positive and decreases to 0 , then $s_{n}-\int_{1}^{n} f(t) d t$ approaches a limit. When $f(n)=$ $1 / n$, this limit is Euler's constant $\gamma ;$ I use the same notation in the general case. The table includes approximations to γ for each series.

Notation. f is a positive decreasing function with $f(\infty)=0$, such that, at least for $n=1,2,3$, $\left|f^{(n)}(x)\right|$ decreases for large x and is $O\left(f(x) x^{-n}\right)$, and with $\Sigma f(n)$ divergent. We define $\varphi(x)=\int_{1}^{x} f(t) d t ; \psi(y)$ is the inverse of $y=\varphi(x)$; we assume that $\psi^{\prime \prime \prime}$ is eventually monotonic. Let $s_{n}=\Sigma_{k=1}^{n} f(k)$ and $\gamma=\lim _{n \rightarrow \infty}\left(s_{n}-\varphi(n)\right)$. When A is a positive integer, n_{A} denotes the smallest integer n such that $s_{n} \geqslant A$ but s_{n-1} $<A$.

For functions f satisfying these hypotheses, the existence of γ suggests that $\psi(A-\gamma)$ ought to be a good estimate of n_{A}.

Theorem 1. For sufficiently large A, the number n_{A} is one of the two integers closest to $\psi(A-\gamma)$.

Theorem 1 (with "sufficiently large" meaning "at least 2 ") was proved for the harmonic series by Comtet [3] ; this seems to have been the first really precise result in this direction.

Because of Theorem $1, n_{A}$ is either $[\psi(A-\gamma)]$ or $[\psi(A-\gamma)]+1$. Let us introduce a function ω such that the first case occurs when the fractional part of $\psi(A-\gamma)$ is less than $\omega(A)$; the second, when the fractional part of $\psi(A-\gamma)$ is greater than $\omega(A)$. Of course, ω is not uniquely determined. I propose to call such a function a Comtet function for f (or for $\Sigma f(n)$).

It has been conjectured that $\omega(A)=1 / 2$ is a Comtet function for the harmonic series, and proved [2] that this series has a Comtet function of the form $\omega(A)=1 / 2+$ $O\left(e^{-A}\right)$.

Theorem 2. Every series of the form $\Sigma f(n)$ (with the hypotheses stated above) has a Comtet function of the form

$$
\omega(A)=\frac{1}{2}+\frac{1}{24}\left(\left|f^{\prime}(m)\right| / f(m)\right)(1+o(1))
$$

where $m=[\psi(A-\gamma)]$.
For any specific f we can improve Theorem 2 by more detailed calculation. We shall do this for the harmonic series.

Theorem 3. For $\Sigma 1 / n$ there is a Comtet function of the form $1 / 2+1 /(24 m)-$ $\left(1 /\left(48 m^{2}\right)\right)(1+o(1))$. For $A \geqslant 2$ there is a Comtet function between $1 / 2+1 /(24 m)$ $-1 /\left(49 m^{2}\right)$ and $1 / 2+1 /(24 m)-1 /\left(47 m^{2}\right)$.

For larger values of A the coefficients of m^{-2} can be taken much closer together.
Theorem 3 does not disprove the conjecture that $\omega(A)=1 / 2$ is a Comtet function for the harmonic series, but it does seem to make it less plausible. It is conceivable that the fractional part of $e^{A-\gamma}$ never falls between $1 / 2$ and $1 / 2+1 /(24 m)-1 /\left(48 m^{2}\right)$. A machine computation for $A=20(1) 200$ found no exceptions; in fact, the cruder Comtet function found in [2] was more than adequate to determine n_{A} for $A \leqslant 200$. The values of n_{A} for $A=1(1) 20$ are given in [2] and reproduced in [9], sequence 1385; n_{21} and n_{22}, calculated by H. P. Robinson, are given in a supplement to [9]. After the present paper had been submitted for publication, Robert Spira communicated to me the results of his computations in which he obtained n_{A} for $A=100(100) 1000$, and also showed that there are no exceptions to the conjecture for $A \leqslant 1000$. Since $1 /(24 \mathrm{~m})$ is about 2×10^{-436} at this point, any exception to the conjecture will have the fractional part of $e^{A-\gamma}$ closer to $1 / 2$ than this, so that it seems unlikely that the conjecture will be disproved by computation.

For the series $\Sigma n^{-1 / 2}$, the corresponding conjecture is that n_{A} is the closest integer to $(A-\gamma+2)^{2} / 4$, where now $\gamma=0.53964549119=2+\zeta(1 / 2)$ (as pointed out to me by John W. Wrench, Jr., who also provided me with the decimal approximation). I found no exceptions for $A=2(1) 1000$.
(3) $\sum_{1}^{\infty} \frac{1}{n^{1 / 2}}$
(6) $\sum_{1} \overline{(n+2) \log (n+2) \log \log (n+2)}$

Series	γ	Number of terms to make the sum greater than									
		3	4	5	6	7	10	20	100	1000	1000000
1	7.21848	1	1	1	1	1	1	6	112	1812	$2.62 \times 10^{6}(\mathrm{a})$
2(b)	0.80193	3	5	7	9	12	20	56	489	7764	1.55×10^{7}
3	0.53964549	5	7	10	14	18	33	115	2574	250731	2.50×10^{11} (c)
4	0.57721566	11	31	83	227	616	12367	2.7×10^{8}	1.5×10^{43}	1.1×10^{434}	$T\left(4.3 \times 10^{5}\right)$
5	0.42816572	8717	5.1×10^{10}	1.3×10^{29}	1.4×10^{79}	1.4×10^{215}	1.6×10^{4321}	$T_{2}(8)$	$T\left(5 \times 10^{42}\right)$	$T\left(4 \times 10^{433}\right)$	$T_{2}\left(4.3 \times 10^{5}\right)$
6	2.29992697	1	3	56	3.1×10^{19}	$T\left(1.3 \times 10^{4}\right)$	$T\left(7 \times 10^{89}\right)$	$T_{2}\left(2 \times 10^{6}\right)$	$T_{2}\left(1.1 \times 10^{41}\right)$	$T_{2}\left(8 \times 10^{431}\right)$	$T_{3}\left(4.3 \times 10^{5}\right)$

[^0](1) $\sum_{1}^{\infty} \frac{1}{\log \log (n+2)}$
(4) $\sum_{1}^{\infty} \frac{1}{n}$

I am indebted to Dr. Wrench for the 150D value of $e^{-\gamma}$ which made the computations for the harmonic series possible. I am also indebted to Lester M. Carlyle, Jr., for communicating the results of his calculations which suggested the possibility of a result like Theorem 3.

I take this opportunity to note the following errata to [2]: In Theorem 1, last line, read m for n (twice). On p. 866, in the line before formula (1), read $-\frac{1}{8} n^{-2}$. On p. 868, lines 9 and 10 (statements (ii) and (iii)) read m for n. On p. 865, first line, read "for $A=5,10,100$ his values are somewhat inaccurate."
2. Proof of Theorems 1 and 2. By the Euler-Maclaurin formula we can write

$$
\begin{equation*}
s_{n}=\gamma+\varphi(n)+\frac{1}{2} f(n)+\frac{1}{12} f^{\prime}(n)+R_{n}, \tag{2.1}
\end{equation*}
$$

where

$$
R_{n}=-\int_{n}^{\infty} f^{\prime \prime \prime}(t) P_{3}(t) d t,
$$

and P_{3} is the function of period 1 that is equal on $(0,1)$ to the Bernoulli polynomial $B_{3}(x) / 6$. (Notation for the B 's as in [6] or [1].) We can estimate R_{n} as in [6, pp. 538-539] ; it turns out that

$$
\begin{equation*}
0<R_{n}<\frac{1}{720}\left|f^{\prime \prime \prime}(n)\right|=O\left(f(n) / n^{3}\right) . \tag{2.2}
\end{equation*}
$$

Suppose now that n is any integer such that $s_{n} \geqslant A$. Put $\delta_{n}=1 / 2 f(n)+$ $f^{\prime}(n) / 12+R_{n}$; then from (2.1) we have $\varphi(n)+\delta_{n}>A-\gamma$, whence

$$
\begin{equation*}
\psi\left\{\varphi(n)+\delta_{n}\right\}>\psi(A-\gamma) . \tag{2.3}
\end{equation*}
$$

We have $\varphi(n) \rightarrow \infty$ and $\delta_{n} \rightarrow 0$, so that it is reasonable to expand the left-hand side of (2.3) in a Taylor series with remainder of order 3 ,

$$
\begin{equation*}
\psi\left\{\varphi(n)+\delta_{n}\right\}=\psi(\varphi(n))+\delta_{n} \psi^{\prime}(\varphi(n))+1 / 2 \delta_{n}^{2} \psi^{\prime \prime}(\varphi(n))+E_{n}, \tag{2.4}
\end{equation*}
$$

where we may assume that

$$
\begin{equation*}
\left|E_{n}\right| \leqslant \frac{1}{6} \delta_{n}^{3} \max \left\{\left|\psi^{\prime \prime \prime}(\varphi(n))\right|,\left|\psi^{\prime \prime \prime}(\varphi(n+1))\right|\right\}, \tag{2.5}
\end{equation*}
$$

when n is large enough (since we assumed that $\left|\psi^{\prime \prime \prime}\right|$ is monotonic). But $\psi(\varphi(n))=n$, $\psi^{\prime}(\varphi(n))=1 / f(n), \psi^{\prime \prime}(\varphi(n))=-f^{\prime}(n) / f(n)^{3}=O\left(n^{-1} f(n)^{-2}\right)$, and

$$
\psi^{\prime \prime \prime}(\varphi(n))=\left\{3 f^{\prime}(n)^{2}-f(n) f^{\prime \prime}(n)\right\} / f(n)^{5}=O\left(n^{-2} f(n)^{-3}\right)
$$

(and similarly for $\psi^{\prime \prime \prime}(\varphi(n+1))$). Hence, (2.4) becomes

$$
\begin{equation*}
\psi\left\{\varphi(n)+\delta_{n}\right\}=n+\delta_{n} / f(n)-1 / 2 \delta_{n}^{2} f^{\prime}(n) / f(n)^{3}+E_{n}, \tag{2.6}
\end{equation*}
$$

where $E_{n}=O\left(n^{-2}\right)$.
Now write $\delta_{n}=1 / 2 f(n)+f^{\prime}(n) / 12+R_{n}$ and multiply out δ_{n}^{2} in (2.6). We get

$$
\begin{equation*}
\psi\left\{\varphi(n)+\delta_{n}\right\}=n+\frac{1}{2}-\frac{1}{24} f^{\prime}(n) / f(n)+O\left(n^{-2}\right) \tag{2.7}
\end{equation*}
$$

where the O-term can be calculated more precisely in any particular case. Thus, if n is large enough, we can combine (2.3) and (2.7) to get

$$
n+\frac{1}{2}-\frac{1}{24} f^{\prime}(n) / f(n)+O\left(n^{-2}\right)>\psi(A-\gamma), \quad n>\psi(A-\gamma)-\frac{1}{2}+O\left(n^{-1}\right)
$$

Consequently, if $m=[\psi(A-\gamma)]$ and A is large enough, we have $n>m-1 / 2$. Since n is an integer, this means that $n \geqslant m$. Now it was assumed that $s_{n} \geqslant A$; in particular, n can be n_{A}, the smallest such index, and we conclude that $n_{A} \geqslant m$.

Similarly, if $n=n_{A}-1$, we have $s_{n}<A$, and so

$$
n_{A}-1<\psi(A-\gamma)-\frac{1}{2}+O\left(n^{-1}\right), \quad n_{A}<m+\frac{3}{2}+O\left(n^{-1}\right)
$$

whence $n_{A} \leqslant m+1$.
Consequently, we have shown that $m=[\psi(A-\gamma)] \leqslant n_{A} \leqslant m+1$ for large A, and this is the conclusion of Theorem 1 .

To go further, suppose that

$$
\begin{equation*}
\psi(A-\gamma)>m+\frac{1}{2}+\left(\frac{1}{24}+\epsilon\right)\left|f^{\prime}(m)\right| / f(m), \quad \epsilon>0 . \tag{2.8}
\end{equation*}
$$

By definition, $s_{n} \geqslant A$ for $n=n_{A}$ and hence by (2.7), (2.3) and (2.8)

$$
n_{A}+\frac{1}{2}+\frac{1}{24}\left|f^{\prime}\left(n_{A}\right)\right| / f\left(n_{A}\right)+O\left(n_{A}^{-2}\right)>m+\frac{1}{2}+\left(\frac{1}{24}+\epsilon\right)\left|f^{\prime}(m)\right| / f(m)
$$

Thus,

$$
\begin{equation*}
n_{A}>m+\frac{1}{24}\left\{\frac{\left|f^{\prime}(m)\right|}{f(m)}-\frac{\left|f^{\prime}\left(n_{A}\right)\right|}{f\left(n_{A}\right)}\right\}+\epsilon \frac{\left|f^{\prime}(m)\right|}{f(m)}+O\left(n_{A}^{-2}\right) . \tag{2.9}
\end{equation*}
$$

We know that $m+1 \geqslant n_{A} \geqslant m$; since $\left|f^{\prime}(x)\right| / f(x)$ decreases, the expression in braces is nonnegative and so $n_{A}>m$ if A is large enough, and (2.8) holds.

Similarly, if $s_{n}<A$ (as it is when $n=n_{A}-1$), we have

$$
n+\frac{1}{2}+\frac{1}{24} \frac{\left|f^{\prime}(n)\right|}{f(n)}+O\left(n^{-2}\right)<\psi(A-\gamma)
$$

Supposing that

$$
\begin{equation*}
\psi(A-\gamma)<m+\frac{1}{2}+\left(\frac{1}{24}-\epsilon\right)\left|f^{\prime}(m)\right| / f(m), \quad \epsilon>0 \tag{2.10}
\end{equation*}
$$

we get

$$
n<m+\frac{1}{24}\left\{\frac{\left|f^{\prime}(m)\right|}{f(m)}-\frac{\left|f^{\prime}(n)\right|}{f(n)}\right\}-\epsilon \frac{\left|f^{\prime}(m)\right|}{f(m)}+O\left(m^{-2}\right)
$$

Here $n=n_{A}-1<m$, so the expression in braces is not positive and consequently $n<m$, i.e., $n_{A}<m+1$. Therefore, $n_{A}=m$ under (2.10) if A is large enough.
3. Proof of Theorem 3. We have $\varphi(x)=\log x, \psi(x)=e^{x}, \gamma=$ 0.5772156649 . . . Then (2.1) becomes

$$
s_{n}=\gamma+\log n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+R_{n}
$$

where

$$
R_{n}=6 \int_{n}^{\infty} t^{-4} P_{3}(t) d t
$$

and by (2.2)

$$
\begin{equation*}
0<R_{n}<\frac{1}{120} n^{-4} \tag{3.1}
\end{equation*}
$$

We now proceed as in Theorem 1 but take one more term in the Taylor series for $\psi(x)=e^{x}$. Here $\delta_{n}=(2 n)^{-1}-\left(12 n^{2}\right)^{-2}+R_{n}$ and

$$
\psi\left\{\varphi(n)+\delta_{n}\right\}=n e^{\delta} n=n\left(1+\delta_{n}+\frac{1}{2} \delta_{n}^{2}+\frac{1}{6} \delta_{n}^{3}+\epsilon_{n} n^{-4}\right)
$$

where

$$
\begin{equation*}
0<\epsilon_{n} \leqslant \frac{1}{24} e^{\delta_{n}} \delta_{n}^{4}<\frac{1}{384} e^{1 /(2 n)}<0.0034 \tag{3.2}
\end{equation*}
$$

if $n \geqslant 2$. Expanding the powers of δ_{n}, we get

$$
\begin{aligned}
\psi\left\{\varphi(n)+\delta_{n}\right\}= & n\left\{1+\frac{1}{2} n^{-1}-\frac{1}{12} n^{-2}+R_{n}\right. \\
& +\frac{1}{2}\left(\frac{1}{4} n^{-2}+\frac{1}{144} n^{-4}+R_{n}^{2}-\frac{1}{12} n^{-3}+n^{-1} R_{n}-\frac{1}{6} n^{-2} R_{n}\right) \\
& +\frac{1}{6}\left[\frac{1}{8} n^{-3}+\frac{3}{4} n^{-2}\left(R_{n}-\frac{1}{12} n^{-2}\right)+\frac{3}{2} n^{-1}\left(R_{n}-\frac{1}{12} n^{-2}\right)^{2}\right. \\
& \left.\left.\quad+\left(R_{n}-\frac{1}{12} n^{-2}\right)^{3}+\epsilon_{n} n^{-4}\right]\right\} \\
= & n+\frac{1}{2}+\frac{1}{24} n^{-1}-\frac{1}{48} n^{-2}+E_{n},
\end{aligned}
$$

where

$$
\begin{aligned}
n^{3} E_{n}= & \frac{1}{6} \epsilon_{n}-\frac{1}{144}+\frac{1}{576} n^{-1}-\frac{1}{10368} n^{-2} \\
& +R_{n}\left(n+\frac{1}{2}+\frac{1}{24} n^{-1}-\frac{1}{24} n^{-2}+\frac{1}{288} n^{-3}\right) \\
& +R_{n}^{2}\left(\frac{1}{2} n+\frac{1}{4}-\frac{1}{24} n^{-1}+\frac{1}{6} n R_{n}\right) .
\end{aligned}
$$

Since each of the expressions in parentheses is positive for $n \geqslant 2$, we get an upper bound for $n^{3} E_{n}$ by replacing ϵ_{n} and R_{n} by their upper bounds from (3.1) and (3.2). The result is a decreasing function of n, so it is largest at $n=2$ and we get, after some calculation, $n^{3} E_{n}<0.005$. To get a lower bound for $n^{3} E_{n}$ we have only to replace R_{n} and ϵ_{n} by 0 , and then we get

$$
n^{3} E_{n}>-\frac{1}{144}-\frac{1}{41472}>-0.007
$$

Using the upper bound, we obtain, for $n=n_{A}$,

$$
n+\frac{1}{2}+\frac{1}{24} n^{-1}-\frac{1}{48} n^{-2}+0.005 n^{-3}>e^{A-\gamma}
$$

Consequently, with $m=\left[e^{A-\gamma}\right]$, if

$$
\begin{equation*}
e^{A-\gamma}>m+\frac{1}{2}+\frac{1}{24} m^{-1}-\frac{1}{49} m^{-2} \tag{3.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
n>m+\frac{1}{24}\left(m^{-1}-n^{-1}\right)+\frac{1}{48}\left(n^{-2}-m^{-2}\right)+\left(\frac{1}{48}-\frac{1}{49}\right) m^{-2}-0.005 n^{-3} . \tag{3.4}
\end{equation*}
$$

But we know that $n \geqslant m$; if we had $n=m$, (3.4) would yield

$$
0>\left(\frac{1}{48}-\frac{1}{49}\right) m^{-2}-0.005 m^{-3}
$$

Now suppose that $A \geqslant 4$; then $m=\left[e^{A-\gamma}\right] \geqslant 30$, and so we would have

$$
0>\left(\frac{1}{48}-\frac{1}{49}\right)-(0.005) / 30>0.000425-0.00016
$$

This contradiction shows that $n>m$, so that $n=n_{A}=m+1$ under (3.3).
On the other hand, with $n=n_{A}-1$ we have

$$
n+\frac{1}{2}+\frac{1}{24} n^{-1}-\frac{1}{48} n^{-2}-0.007 n^{-3}<e^{A-\gamma}
$$

If $n<m$, we have $n_{A}<m+1$ and so $n_{A}=m$, so we have only to exclude the possibility that $n=m$. If we suppose that $n=m$ and

$$
\begin{equation*}
e^{A-\gamma}<m+\frac{1}{2}+\frac{1}{24} m^{-1}-\frac{1}{47} m^{-2} \tag{3.5}
\end{equation*}
$$

we then have

$$
m+\frac{1}{2}+\frac{1}{24} m^{-1}-\frac{1}{48} m^{-2}-0.007 m^{-3}<m+\frac{1}{2}+\frac{1}{24} m^{-1}-\frac{1}{47} m^{-2}
$$

that is, $1 / 47-1 / 48<0.007 m^{-1}$. If $A \geqslant 4$, we again have $m \geqslant 30$, and the last inequality says that $0.00043<0.00024$. Thus, the assumption that $n_{A}=m+1$ leads to a contradiction if (3.5) holds.

This establishes the second part of the theorem for $A \geqslant 4$; but it also holds, by direct computation, for $A=2,3$.

If we replace $1 / 47$ and $1 / 49$ by $1 / 48 \pm \epsilon$, we can take ϵ as small as we like if we take $A \geqslant A_{0}$, sufficiently large, and the first part of Theorem 3 follows.

Department of Mathematics
Northwestern University
Evanston, Illinois 60201

1. M. ABRAMOWITZ \& I. A. STEGUN (Editors), Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, Nat. Bur. Standards Appl. Math. Ser., 55, U. S. Government Printing Office, Washington, D.C., 1964. MR 29 \#4914.
\rightarrow R. P. BOAS, JR. \& J. W. WRENCH, JR., "Partial sums of the harmonic series," Amer. Math. Monthly, v. 78, 1971, pp. 864-870. MR 44 \#7179.
\rightarrow L. COMTET, "Problem 5346," Amer. Math. Monthly, v. 74, 1967, p. 209.
2. G. H. HARDY, Orders of Infinitv. 2nd ed., Cambridge Univ. Press, New York, 1924.
3. K. A. KARPOV \& S. N. RAZUMOVSKIĬ, Tablicy Integral'nogo Logarifma, Izdat. Akad. Nauk SSSR, Moscow, 1956, 319 pp. MR 19, 67; erratum, ibid., p. 1431.
4. K. KNOPP, Theory and Application of Infinite Series, Blackie, London and Glasgow, 1928.
5. J. MILLER \& R. P. HURST, 'Simplified calculation of the exponential integral," MTAC, v. 12, 1958, pp. 187-193. MR 21 \#3103.
6. Tables of Sine, Cosine and Exponential Integrals, Vols. I, II, National Bureau of Standards, WPA Project Nos. 765-97-3-10, 65-2-97-33, U. S. Government Printing Office, Washington, D. C., 1940. MR 2, 239, 366.
7. N. J. A. SLOANE, A Handbook of Integer Sequences, Academic Press, New York and London, 1973. MR 50 \#9760.

[^0]: Notes: To simplify the typography, I write $T(x)=T_{1}(x)=10^{x}, T_{n}(x)=T\left(T_{n-1}(x)\right)$.
 (a) The function φ for series 1 has apparently not been tabulated before; I tabulated it in order to get γ and $\psi(A-\gamma)$. The value 2.6×10^{6} given in [4] corresponding to $A=10^{6}$ was probably arrived at by arguing that $\varphi(x)$ is nearly $x / \log \log x$, so $\psi(x)$ is nearly $x \log \log x$.
 (b) Here $\varphi(x)$ was sufficiently well tabulated [5], [7], [8]
 (c) It is easy to find this entry exactly.

