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Growth of Partial Sums of Divergent Series

By R. P. Boas, Jr.

Abstract. Let Zf(n) be a divergent series of decreasing positive terms, with partial
n» Where [ decreases sufficiently smoothly; let p(x) = f’f f(?) dt and let Y be
the inverse of . Let n A be the smallest integer n such that Sy > A but Sp—1 <A
A4=2,3,...)slety= lim{E'l'f(k) - sp(n)} be the analog of Euler’s constant;
let m = [Y(4 —v)]. Call wa Comtet function for Zf(n) if n4 = m when the

sums §

fractional part of Y(A4 — v) is less than w(4) and n 4 =m + 1 when the fractional
part of Y (A4 — v) is greater than w(4). It has been conjectured that w(4) = % is

a Comtet function for £1/n. It is shown that in general there is a Comtet function
of the form

1 '
wi) = + 2= I ml/rem}a + oy,

For Z1/n there is a Comtet function of the form % + 1/(24m) —{l/(48m2)}(l + o(1)).

Some numerical results are presented.

1. Introduction. If Z7_, f(n) is a divergent series of positive terms that ap-
proach 0, one can measure how fast it diverges by seeing how fast the partial sums
s, increase. Numerical data for representative series are given in the appendix to [4]
(p. 69), but some of them are rather inaccurate. The present note grew out of an
attempt to recompute this table. The results are given in the table on p. 259; they
correct some of the entries in [4] and give a few more. The entries less than 10°
were found by direct machine evaluation of the partial sums; most of these were
checked, and the other entries were obtained, by using Theorem 2 below, which is a
generalization of known results for the harmonic series [2], [3]. The entries for the
harmonic series (no. 4 in the table) were originally calculated by Wrench and published
in [2].

A classical theorem of Maclaurin and Cauchy (see [4, p. 45]) states that if f
is positive and decreases to 0, then s, — [f(¢) dt approaches a limit. When f(n) =
1/n, this limit is Euler’s constant v; I use the same notation in the general case. The
table includes approximations to 7y for each series.

Notation. fis a positive decreasing function with f(=) = 0, such that, at least
forn=1,2,3, if(")(x)l decreases for large x and is O(f(x)x™"), and with Zf(n) di-
vergent. We define o(x) = [f(£)dt; Y(») is the inverse of y = ¢(x); we assume that
" is eventually monotonic. Lets, = Z%_, f(k) and y = lim, _, (s, — ¢(n)). When
A is a positive integer, n, denotes the smallest integer n such that s, > A4 buts,_;
< A.
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258 R. P. BOAS, JR.

For functions f satisfying these hypotheses, the existence of vy suggests that
Y(A — ) ought to be a good estimate of n ;.

THEOREM 1. For sufficiently large A, the number n, is one of the two integers
closest to Y(4 — 7).

Theorem 1 (with “sufficiently large” meaning “at least 2”’) was proved for the
harmonic series by Comtet [3]; this seems to have been the first really precise result
in this direction.

Because of Theorem 1, n, is either [Y(4 — )] or [Y(4 — )] + 1. Let usin-
troduce a function w such that the first case occurs when the fractional part of
(A — 7) is less than wX(A4); the second, when the fractional part of Y/(4 — ) is
greater than w(A4). Of course, cw is not uniquely determined. I propose to call such
a function a Comtet function for f (or for Zf(n)).

It has been conjectured that «w(A4) = % is a Comtet function for the harmonic
series, and proved [2] that this series has a Comtet function of the form w(4) =% +
o(e™).

. THEOREM 2. Every series of the form XZf(n) (with the hypotheses stated above)
has a Comtet function of the form

@A) = 5 + 55 (LML + (1)),

where m = [Y(4 —v)].

For any specific f we can improve Theorem 2 by more detailed calculation. We
shall do this for the harmonic series.

THEOREM 3. For Z1/n there is a Comtet function of the form % + 1/(24m) —
(1/(48m>))(1 + o(1)). For A > 2 there is a Comtet function between % + 1/(24m)
— 1/(49m?) and % + 1/(24m) — 1/(47m?).

For larger values of A the coefficients of m ™2 can be taken much closer together.

Theorem 3 does not disprove the conjecture that w(4) = % is a Comtet function for
the harmonic series, but it does seem to make it less plausible. It is conceivable that the
fractional part of e# ~7 never falls between % and % + 1/(24m) — 1/(48m?). A machine
computation for 4 = 20(1)200 found no exceptions; in fact, the cruder Comtet function
found in [2] was more than adequate to determine n, for 4 <200. The values of
n, for A = 1(1)20 are given in [2] and reproduced in [9], sequence 1385; n,, and
n,,, calculated by H. P. Robinson, are given in a supplement to [9]. After the
present paper had been submitted for publication, Robert Spira communicated to me
the results of his computations in which he obtained n, for 4 = 100(100)1000, and
also showed that there are no exceptions to the conjecture for 4 < 1000. Since
1/(24m) is about 2 x 107436 at this point, any exception to the conjecture will have
the fractional part of e4 ™7 closer to % than this, so that it seems unlikely that the
conjecture will be disproved by computation.

For the series Zn~%, the corresponding conjecture is that n, is the closest
integer to (4 — v + 2)?/4, where now y = 0.53964 54911 9 = 2 + §(%) (as pointed
out to me by John W. Wrench, Jr., who also provided me with the decimal approxi-
mation). I found no exceptions for 4 = 2(1)1000.
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I am indebted to Dr. Wrench for the 150D value of ™Y which made the compu-
tations for the harmonic series possible. I am also indebted to Lester M. Carlyle, Jr.,
for communicating the results of his calculations which suggested the possibility of a
result like Theorem 3.

I take this opportunity to note the following errata to [2]: In Theorem 1, last
line, read m for n (twice). On p. 866, in the line before formula (1), read — l _2.
On p. 868, lines 9 and 10 (statements (ii) and (iii)) read m for n. On p. 865, ﬁrst
line, read “for A = 5, 10, 100 his values are somewhat inaccurate.”

2. Proof of Theorems 1 and 2. By the Euler-Maclaurin formula we can write
.1 =y+on) += f(n) + f(n) +R,,
where

R, = —fn (OP4() dt,
and P, is the function of period 1 that is equal on (0, 1) to the Bernoulli polynomial
B,(x)/6. (Notation for the B’s as in [6] or [1].) We can estimate R, as in [6, pp.
538-539]; it turns out that
1 " 3

2.2) 0<R,< -736[)" )| = o(f(n)/n°).

Suppose now that n is any integer such that s, > 4. Put §, = %f(n) +
f'(n)/12 + R, ; then from (2.1) we have ¢(n) + 8, > A — v, whence

(23) Ylo(n) +8,1> (A4 - 7).

We have p(n) — o0 and §,, — 0, so that it is reasonable to expand the left-hand side
of (2.3) in a Taylor series with remainder of order 3,

(24) Ylan) +6,} = Y(pn) +8,'(pn)) + B854 (w(n) + E,,

where we may assume that

(2.5) IEn|< » max (" (@), W"(e(n + D)1},

"

when 7 is large enough (since we assumed that || is monotonic). But Y(¢(n)) = n,

V(@) = 1/f(n), ¥" (on)) = —F )f(n)* = 0™ f(n)7?), and
V" (@(n) = (37" — ff" (MY f () = O~ 2f(n) ™)
(and similarly for ¥"'(¢(n + 1))). Hence, (2.4) becomes

(2.6) Ylon) +8,} =n +8,/f(n) — B8 ()/f(n)* + E,,

where E, = o(n?).
Now write 8, = ¥%f(n) + f'(n)/12 + Rn and multiply out 8,2, in (2.6). We get

@27) Yign) + 8,0 =n+3 5 23 /@Iy + 0r7),
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where the O-term can be calculated more precisely in any particular case. Thus, if n
is large enough we can combine (2.3) and (2.7) to get

n + 5~ —*f( nifn) + 0™*) > YA -7, n>YA-7)- + o(n™1).

Consequently, if m = [Y(4 — v)] and 4 is large enough, we have n > m — %. Since
n is an integer, this means that n > m. Now it was assumed that s, = 4; in particu-
lar, n can be n,, the smallest such index, and we conclude that n, =m

Similarly, if n = n, — 1, we have s, < 4, and so

1
ng-1<YA-m -3+ 00, <m+%+0(n_1),

whence n, <m + 1.

Consequently, we have shown that m = [Y(4 —v)] <n, <m + 1 for large
A, and this is the conclusion of Theorem 1.

To go further, suppose that

(2.8) WA -7 >m+ % + (—212 + e) F'(m)lifm), €>0.

By definition, s, > A for n = n, and hence by (2.7), (2.3) and (2.8)

1 . )
na+ 5 3 MO +002) > m + 5 + (35 + €)ir omism).
Thus,
2.9) ny>m+ {L(%)l J(r;j)l'} J—l + 0(n32).
We know that m + 1 > n, > mj since |f'(x)|/f(x) decreases, the expression in braces

is nonnegative and so n, > m if A is large enough, and (2.8) holds.
Similarly, if s, < A (as it is when n = n, — 1), we have

1,1 Ifml -
nt g ey T O <y - ).

Supposing that

(2.10) VA=) <m+ 5+ (3 - rmiren, >0,

we get
n<m+— {.LL il_} __i_l_ + —2
fmy ~fy § T fomy F O
Here n = n, — 1 <m, so the expression in braces is not positive and consequently

n<m,ie,n, <m+1. Therefore, n, = m under(2.10) if 4 is large enough.

3. Proof of Theorem 3. We have ¢(x) = log x, Y(x) = €, v =
0.57721 56649 ... . Then (2.1) becomes

1+R,

1
sn—7+logn+2n—12n2 .

where
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R,=6 J: 4P,(0) at,
and by (2.2)
(3.1) 0<R,< -l-éan“‘.

We now proceed as in Theorem 1 but take one more term in the Taylor series
for Y(x) = e*. Here §, = (2n)"! = (12n*) 2 + R, and

1
Ylo(n) +6,} = ne’n =n (1 +6, + 55,2, + éag + enn-“),

where

1 s,ca_ 1 1/2m)
(3.2) 0<e, <3782 < g7 €/ < 0.0034

if n > 2. Expanding the powers of §,, we get

=n+%+21—4n‘1 ‘ﬁn—2+En,
where
e L v R -
+Rn<n+%+—212n—l__212n—2+§é_8_n_3)
+R3<%"+%—§n“+én&‘>.

Since each of the expressions in parentheses is positive for n > 2, we get an upper
bound for n3En by replacing €, and R,, by their upper bounds from (3.1) and (3.2).
The result is a decreasing function of #, so it is largest at n = 2 and we get, after

some calculation, n3En < 0.005. To get a lower bound for n3En we have only to
replace R, and €, by 0, and then we get

s p s L 1 o
n°E, > 122 ~ 41473 > - 0.007.
Using the upper bound, we obtain, forn =n,

1.1 4 1 5 _3 —
n+s+sgn 25 " 2 +0.005n > AT,

Consequently, with m = [eA77], if
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(3.3) —y 1,1 -1_1 2
A >m +2+24m 25 ™

we have

B4 n>m+ 21—4 m*-nl + (n_2 -m?) + (418 %)m‘z - 0.0051n73.

But we know that n > m; if we had n = m, (3.4) would yield
1 1) -3
0>(-5 — 75 )m “ —0.005m

Now suppose that 4 > 4; then m = [¢e4~7] > 30, and so we would have

1 1

0> <‘§ - E) —(0.005)/30 > 0.000425 - 0.00016.

This contradiction shows that n > m, so that n = n, = m + 1 under (3.3).
On the other hand, with n = n, — 1 we have
1,1 a1 2 -3 ~y
n+3 +5on 48n 0.007n73 <477,
If n <m, we have n, <m + 1 and so n, = m, so we have only to exclude the
possibility that n = m. If we suppose that n = m and

_ 1 1 1
A=Y -1 _ 2
3.5) <m+2+24 7"

we then have

1 i l__ -3 1 1 _L —2
m+2+24m 48m - 0.007m <m+2+24m 7 m

that is, 1/47 — 1/48 < 0.007m™!. If A > 4, we again have m > 30, and the last in-
equality says that 0.00043 < 0.00024. Thus, the assumption that n, = m + 1 leads
to a contradiction if (3.5) holds.

This establishes the second part of the theorem for 4 > 4; but it also holds, by
direct computation, for 4 = 2, 3.

If we replace 1/47 and 1/49 by 1/48 * €, we can take € as small as we like if we
take 4 > A, sufficiently large, and the first part of Theorem 3 follows.
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