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Growth of Partial Sums of Divergent Series 

By R. P. Boas, Jr. 

Abstract. Let Y2f(n) be a divergent series of decreasing positive terms, with partial 
sums S where f decreases sufficiently smoothly; let ep(x) = f-jf(t) dt and let P be 
the inverse of up. Let nA be the smallest integer n such that sn > A but sn-1 < A 
(A = 2, 3, . . . ); let y = liml{ynf(k) - p(n)} be the analog of Euler's constant; 
let m = [P(A - y)I. Call w a Comtet function for Ef(n) if nA = m when the 
fractional part of p(A - y) is less than w(A) and nA = m + 1 when the fractional 
part of p(A - y) is greater than w(A). It has been conjectured that w(A) = 1/2 is 
a Comtet function for Y1/n. It is shown that in general there is a Comtet function 

of the form 

L (A) =2+ {If(m)I/f(m)}(1 + o(1)). 

For YI/n there is a Comtet function of the form 1/2 + 1/(24m) -{I1/(48m2)k1 + o(1)). 

Some numerical results are presented. 

1. Introduction. If I' If(n) is a divergent series of positive terms that ap- 

proach 0, one can measure how fast it diverges by seeing how fast the partial sums 

Sn increase. Numerical data for representative series are given in the appendix to [4] 

(p. 69), but some of them are rather inaccurate. The present note grew out of an 

attempt to recompute this table. The results are given in the table on p. 259; they 

correct some of the entries in [4] and give a few more. The entries less than 106 

were found by direct machine evaluation of the partial sums; most of these were 

checked, and the other entries were obtained, by using Theorem 2 below, which is a 

generalization of known results for the harmonic series [2] , [3] . The entries for the 

harmonic series (no. 4 in the table) were originally calculated by Wrench and published 
in [2]. 

A classical theorem of Maclaurin and Cauchy (see [4, p. 45]) states that if f 

is positive and decreases to 0, then sn - fnf(t) dt approaches a limit. When f(n) = 

l/n, this limit is Euler's constant y; I use the same notation in the general case. The 

table includes approximations to y for each series. 

Notation. f is a positive decreasing function with f(oo) = 0, such that, at least 

for n = 1, 2, 3, if(n)(x)I decreases for large x and is O(f(x)x-n), and with lf(n) di- 

vergent. We define p(x) = f'lf(t) dt; 4(y) is the inverse of y = <(x); we assume that 

4"" is eventually monotonic. Let s, = In2= f(k) and y = limn ,(sn - (p(n)). When 

A is a positive integer, nA denotes the smallest integer n such that sn > A but sn-I 

<A. 
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For functions f satisfying these hypotheses, the existence of y suggests that 

4(A - y) ought to be a good estimate of nA. 
THEOREM 1. For sufficiently large A, the number nA is one of the two integers 

closest to g(A - y). 
Theorem 1 (with "sufficiently large" meaning "at least 2") was proved for the 

harmonic series by Comtet [3] ; this seems to have been the first really precise result 
in this direction. 

Because of Theorem 1, nA is either [ip(A -y)] or [O(A -'y)] + 1. Let us in- 
troduce a function co such that the first case occurs when the fractional part of 

(A - y) is less than &(A); the second, when the fractional part of 4(A - -y) is 
greater than c(A). Of course, co is not uniquely determined. I propose to call such 
a function a Comtet function for f (or for 1f(n)). 

It has been conjectured that co(A) = 1/2 is a Comtet function for the harmonic 
series, and proved [2] that this series has a Comtet function of the form co(A) = 1/2 + 

O(e-A). 

THEOREM 2. Every series of the form 2f(n) (with the hypotheses stated above) 
has a Comtet function of the form 

1 1 
@(A) = ? + (Qf'(m)I/f(m))(1 + o(1)), 

where m = [O(A -yA)] . 
For any specific f we can improve Theorem 2 by more detailed calculation. We 

shall do this for the harmonic series. 
THEOREM 3. For 1/n there is a Comtet function of the form 1? + 1/(24m) - 

(1/(48m2))(1 + o(1)). For A > 2 there is a Comtet function between 1/2 + 1/(24m) 
- 1/(49m2) and ? + 1/(24m) - 1/(47m2). 

For larger values of A the coefficients of m-2 can be taken much closer together. 
Theorem 3 does not disprove the conjecture that w(A) = ? is a Comtet function for 

the harmonic series, but it does seem to make it less plausible. It is conceivable that the 
fractional part of eA `Y never falls between 1? and ?h + 1/(24m) - 1/(48m2). A machine 
computation for A = 20(1)200 found no exceptions; in fact, the cruder Comtet function 

found in [2] was more than adequate to determine nA for A < 200. rhe values of 
nA for A = 1(1)20 are given in [2] and reproduced in [9], sequence 1385; n2l and 
n22, calculated by H. P. Robinson, are given in a supplement to [9]. After the 
present paper had been submitted for publication, Robert Spira communicated to me 
the results of his computations in which he obtained nA for A = 100(100)1000, and 
also showed that there are no exceptions to the conjecture for A < 1000. Since 
1/(24m) is about 2 x 10-436 at this point, any exception to the conjecture will have 
the fractional part of eA- closer to ? than this, so that it seems unlikely that the 
conjecture will be disproved by computation. 

For the series In-? , the corresponding conjecture is that nA is the closest 
integer to (A - y + 2)2/4, where now y = 0.53964 54911 9 = 2 + t(%) (as pointed 
out to me by John W. Wrench, Jr., who also provided me with the decimal approxi- 
mation). I found no exceptions for A = 2(1)1000. 
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I am indebted to Dr. Wrench for the 150D value of eC which made the compu- 

tations for the harmonic series possible. I am also indebted to Lester M. Carlyle, Jr., 

for communicating the results of his calculations which suggested the possibility of a 

result like Theorem 3. 
I take this opportunity to note the following errata to [2]: In Theorem 1, last 

1 -2 
line, read m for n (twice). On p. 866, in the line before formula (1), read - 1 n 

On p. 868, lines 9 and 10 (statements (ii) and (iii)) read m for n. On p. 865, first 

line, read "for A = 5, 10, 100 his values are somewhat inaccurate." 

2. Proof of Theorems 1 and 2. By the Euler-Maclaurin formula we can write 

(2.1) S =-+ p(n)+2f(n)+ 1 fI(n)+R 

where 

Rn-f1 f"'(t)P3(t) dt, 

and P3 is the function of period 1 that is equal on (0, 1) to the Bernoulli polynomial 

B3(x)/6. (Notation for the B's as in [6] or [1].) We can estimate Rn as in [6, pp. 

538-539] ; it turns out that 

13 . (2.2) 0 < Rn < f '(n)I = 0(f(n)/n3). 720 

Suppose now that n is any integer such that sn > A. Put 8n = f2f(n) + 

f'(n)12 + Rn; then from (2.1) we have p(n) + a n > A - y, whence 

(2.3) A{td{n) + n } > ti -'4)- 

We have Xn) > -o and 5n ? 0, so that it is reasonable to expand the left-hand side 

of (2.3) in a Taylor series with remainder of order 3, 

(2.4) 4{1n) + ?n} = 4({n)) + ano'(an)) + 1/28 2 0,"(X(n)) + E 

where we may assume that 

(2.5) IE I < S &3 max {I."'(p(n))I, 10"'((p(n + l))}, 

when n is large enough (since we assumed that 1"'I is monotonic). But 4(p(n)) =n, 

P'((n)) = l/f(n), 4"/ (Xn)) = -f'(n)/f(n)3 = 0(n-1f(n)-2), and 

"'(p(n)) = { 3f'(n)2 - f(n)f"(n)}/f(n)5 = 0(n-2f(n)-3 

(and similarly for P"'(s(pn + 1))). Hence, (2.4) becomes 

(2.6) i{Xn) ? = n ? 8n/f(n) - ?8j25f'(n)1f(n)3 + En? 

where En = O(n-2). 

Now write 8n = ?2f(n) + f'(n)/12 + Rn and multiply out 8,2 in (2.6). We get 

(2.7) Cl{an) + ?n} = n + 1 - 1 f'(n)1f(n) + O(n-2), 
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where the 0-term can be calculated more precisely in any particular case. Thus, if n 

is large enough, we can combine (2.3) and (2.7) to get 

n + I - I4 f I(n)lf(n) + 0(n- 2) > (A - y), n > O/(A - y) - 2-+ 0(n-1). 2 242 

Consequently, if m = [(A- -y)] and A is large enough, we have n > m - 1/2. Since 

n is an integer, this means that n > m. Now it was assumed that S,, > A; in particu- 

lar, n can be nA, the smallest such index, and we conclude that nA > m. 

Similarly, if n = nA - 1, we have s,, < A, and so 

n - 1 < O(A - y) - ?+ O(n-), nA <m + 3 + O (n-1), 

whence nA ? m + 1. 
Consequently, we have shown that m = [O(A - y)] < nA ? m + 1 for large 

A, and this is the conclusion of Theorem 1. 
To go further, suppose that 

(2.8) t(A - y) > m + ? (I 4 +?) f'(m)I/f(m), 6 > 0. 

By definition, s., > A for n = nA and hence by (2.7), (2.3) and (2.8) 

n + 2 + If'(nA)I/f(nA) + O(nj2) > m + ? ? e,)If'(m)I/f(m). 

Thus, 

(2.9) n >m+ 1 k 
-If'(nA) 

I +0(n _2)_ A 24 ~f(m) f(nA) fAM) 
A 

We know that m + ? > nA > m; since If'(x)I/f(x) decreases, the expression in braces 

is nonnegative and so nA > m if A is large enough, and (2.8) holds. 

Similarly, if s., < A (as it is when n = nA - 1), we have 

n + 2 + 21 If(n ) I + O(n-2) < O(A _ A). 2 24 f(n) 

Supposing that 

(2.10) O(A - y) < m + 2 + 1 
- )f '(m)/f(m), e > 0, 

we get 

n <m? c ?O(MF2). 24)i f(m) f(n) } A fM) +O ) 

Here n = nA - 1 < m, so the expression in braces is not positive and consequently 
n < m, i.e., nA < m + 1. Therefore, nA = m under (2.10) if A is large enough. 

3. Proof of Theorem 3. We have (p(x) = log x, 4(x) = ex, y= 

0.57721 56649 ... Then (2.1) becomes 

1 1 
S = y + log n + - 12n2 

where 
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Rn = 6J t-4P3(t) dt, 

and by (2.2) 

(3.1) O<Rn < 120 n-. 

We now proceed as in Theorem 1 but take one more term in the Taylor series 

for (x) = ex. Here 5n = (2n)-1 - (12n2)-2 + Rn and 

O{f (n) + 5n 6 en = n 1X + an + 1 
n2 + 6 5 3 + 6 nn4) n}~n = ne6 n (? ? 2 ? 6 

where 

(3.2) 0 < en < e ,n54 < 3 e" /(2n) < 0.0034 n 24 n 384 

if n > 2. Expanding the powers of Gn, we get 

{1f(n) + 5n} = n 1t +21 n-I - 12 n-2 + Rn 
- 2? 1 n 4R - ?1 2 

(1 - 2 + 1 n-4 + 2 - ln-3 + 2 n 6 n 

[1 ?3 + v2 (jR - I12n-2) ? 2 (Rn I12 ) 

+ (R - n-2) + enf-41 } 
1 1 -1 1 2 

2 24 481 21 

where 
n3E~ -1-e -1 + 1 ~-i~ -2 

-n2 + 
- 

n3n6 '-144 +576n- 10368n- 

+ R(n +1+ 1 n -2 + + 
f2 2 24 24 2n88 

Since each of the expressions in parentheses is positive for n > 2, we get an upper 
bound for n3En by replacing en~ and Rn by their upper bounds from (3.1) and (3.2). 
The result is a decreasing function of n, so it is largest at n = 2 and we get, after 
some calculation, n3En < 0.005. To get a lower bound for n3En we have only to 
replace Rn and en by 0, and then we get 

n3 n3E- > 1 1 - - 

6En > -144 41472 >0.007. 

Using the upper bound, we obtain, for n = , 

+'+-1-n 1 I1- +00n >e2 + Y 
n + R- n 2 nl + +1 n-2 O.On- > ea 

2osqety 24th 8 = 24 if 

Con rseuently withm derasn efuncio of n oi slreta n egt fe 
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(3.3) eA >m > ?m + 
I 

+ I?M?-I 
I 

m_2 2 24 49 
we have 

(3.4) n > m + 
1 

(m-l - n-') + 
I 

(n-2 - m-2) + (-2 
- 0.005 -3 

24 48 n48m ) - 9 .05 

But we know that n > m; iT we had n = m, (3.4) would yield 

0 > I8 - )m-2 - 0.005m-3. 

Now suppose that A > 4; then m = [eA-y] > 30, and so we would have 

0 > - - (0.005)/30 > 0.000425 - 0.00016. 

This contradiction shows that n > m, so that n = nA = m + 1 under (3.3). 
On the other hand, with n = nA - 1 we have 

n+ 
I 

+ 
I 

n-l 
I - n-2 - 0.007n -3 < eA -y. 

2 24 48 ~ .0n<T 
If n < m, we have nA < m + l and so nA = m, so we have only to exclude the 
possibility that n = m. If we suppose that n = m and 

(3-5) eA-y < 
1 

- 1 -l _ 1 -2 
(3.5) ~~~~~ ~~~2 24 47 

we then have 

m ? - m_ -m-2-0.007m-3<m?+-?+m -- 
2 24 48 2 24 47 

that is, 1/47 - 1/48 < 0.007m-'. If A > 4, we again have m > 30, and the last in- 
equality says that 0.00043 < 0.00024. Thus, the assumption that nA = m + 1 leads 
to a contradiction if (3.5) holds. 

This establishes the second part of the theorem for A > 4; but it also holds, by 
direct computation, for A = 2, 3. 

If we replace 1/47 and 1/49 by 1/48 ? c, we can take e as small as we like if we 
take A > AO, sufficiently large, and the first part of Theorem 3 follows. 
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